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Introduction

Today, smartphones represent the dominant photography tool due to their grow-

ing imaging capabilities, portability, and affordability. Smartphone camera specifi-

cations are key factors that heavily influence the purchase of a new mobile device.

Advancements in this field follow two main directions: hardware improvements, in-

cluding the optical system (lenses) and camera sensors, and progress in computational

photography solutions. Notably, the second direction is gaining increasing attention

from research groups in both industry and academia, leading to the development of

more advanced approaches for various applications. A wide range of solutions for

tasks such as super-resolution ([12], [61]), denoising ([51], [32]), color correction ([24],

[75]), and more has achieved impressive results, enabled by deep learning models.

The image signal processor (ISP; refer to fig. 1) represents a core component of the

smartphone camera. The output of the camera sensor goes through the ISP which re-

fines the data to produce visually pleasing results that are well-suited to human visual

system. ISP transformations can be defined as mapping from the RAW image space,

characterized by the properties of a specific sensor, to the RGB image space. Gener-

ally, a Bayer color filter array (CFA) is placed on top of a silicon photodetector array to

capture the scene at different wavelength ranges, enabling the reconstruction of color

information. Demosaicing is the process of interpolating the missing red, green, and

blue values in the Bayer color filter array to reconstruct a full-color image. Essentially,

the functions that make up the ISP pipeline include demosaicing, denoising, white

balance, color corection, tone mapping, gamma correction, and compression. Increas-

ingly, traditional, carefully hand-crafted modules of the pipeline are being replaced

or augmented by deep learning models. In particular, various neural networks have

demonstrated their ability to accurately approximate this complex transformation us-

ing real-world RAW-to-RGB datasets. Despite the training paradigm, a learned ISP

aims to map a RAW image to a single, high-quality, perceptually pleasing RGB image.
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Figure 1: Smartphone imaging pipeline: optical, sensor, and ISP stages.

Developing AI-based solutions such as Learned ISP, Efficient LLMs or Efficient

Stable Diffusion, designed to run on edge devices, requires a strong understanding

of both the software that can be used and the available hardware with their limita-

tions. Common restrictions include a small amount of RAM and partial support for key

components in deep learning frameworks. Such limitations make it impossible to pro-

cess high-resolution images using standard neural network models, thus demanding

resource-efficient redesign strategies for compatibility with mobile target platforms.

Our proposed research topic focuses on ’Optimizing RAW Image Processing and

Understanding Using Deep Learning on Smartphone GPUs and NPUs’. Using deep

learning technologies, we aim to improve the user experience in smartphone photogra-

phy through solutions that can be executed in real time using on-device AI accelerators

such as Graphics Processing Unit (GPUs) and Neural Processing Units (NPUs). Poten-

tial areas of focus include controllability in the image signal processor, low-light object

detection, burst RAW restoration, and RAW-to-RAW image translation. Through our

approaches, we plan to introduce practical deep learning solutions including architec-

tures and training paradigms, among other strategies, to address real world problems.
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Motivation

Smartphones released in the past one to two years, equipped with high-end chipsets,

often include powerful AI accelerators. The latest NPUs found in these devices can of-

fer performance comparable to desktop GPUs such as the NVIDIA RTX 5070 or 5080.

Although GPUs consume more energy than NPUs and are generally slower in AI-

specific tasks, modern GPUs are still faster than NPUs from five years ago, which

makes them a valuable resource. This creates a strong motivation to fully leverage

the computational capabilities of modern NPUs, or at the very least mobile GPUs, by

deploying deep learning models directly on the device.

Since 2020, the idea of developing a learnable ISP capable of reconstructing the

RGB output from RAW sensor data has been increasingly studied. In one of the first

solutions ([41]), a method was proposed that outperformed the proprietary ISP in-

tegrated into the Huawei P20 imaging system. In addition, the Zurich RAW-to-RGB

dataset was introduced, consisting of paired RAW and RGB images captured using a

smartphone and a DSLR camera. In follow-up research, academic and industry groups

have developed additional solutions that process RAW data ([59], [77], [62], [71], [80]),

including learnable ISPs ([46], [36], [65], [60], [69]). Some of these efforts that operate

on RAW data have also resulted in the release of new datasets ([79], [57], [64], [1], [3]).

Typically, many computer vision tasks are performed by transforming a standard

RGB image into an improved RGB version. The original, unaltered RAW Bayer data

from the sensor contains richer information, typically stored in 10 to 16 bits per pixel.

As the ISP processes RAW data into an RGB version primarily designed to match hu-

man perception, it may lose valuable information when performing specific tasks. For

example, when trying to detect certain objects in low-light conditions, a stronger so-

lution might be developed relying on the RAW data rather than the processed RGB

version. However, compared to RGB datasets, publicly available RAW image datasets

are relatively scarce and less diverse.
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At the same time, we are witnessing incredible growth in the power of AI acceler-

ators available in our pockets, as well as an increase in the number of training datasets

specifically designed for RAW image processing. Since this is a relatively recent de-

velopment, there are still only a few solutions available for many computer vision

applications that work directly with RAW data. Some practical applications have been

explored by just one or a handful of research projects, while others are still waiting for

someone to break the ice.

The interest in such applications designed for real-time on-device execution at-

tracts significant attention from both industry and university research groups. As I

personally experienced through my participation at CVPR as an author, there are many

postdocs and PhD candidates interested in specific areas within this broader field. Ma-

jor tech companies, including Meta, Sony, and others, have shown strong interest in

recent research on image signal processing, including our work ([4], [37]) presented at

the Mobile AI Workshop in CVPR 2025, and have dedicated research teams focused

on this area. As computer vision is one of the largest and most active research fields,

numerous top-tier, prestigious, and global conferences are held periodically. Each of

these major events accepts many papers on this topic every time. As a result of fu-

ture research in the coming years, we aim to work on relevant projects and target such

conferences for paper submissions.

My deep interest in low-level computer vision supports this research direction.

A valuable experience that prepared me for doctoral-level research was the work I did

during my master’s degree in the Advanced Studies program. During this stage, I

had the opportunity to explore computer vision in greater depth and discovered how

fascinating and complex the field truly is. I also faced and overcame challenges that

I believe are inevitable in any PhD journey, which gave me important insights and a

more realistic perspective on research. Because of this, I believe the coming years of

doctoral work will be more efficient and focused, as I have already learned valuable

lessons from my own experience. The research I conducted under the guidance of my

supervisor provided a strong foundation for this. During that time, I contributed to the

development of new loss functions and a dynamic loss adaptation strategy. This led to

the introduction of the first unsupervised training method applied to an ISP ([4]), along

with a supervised training method that achieved better results than those reported by

the state of the art last year ([50]), both in terms of inference speed and output quality.
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Chapter 1

Overview of the Area

1.1 Workshops and Benchmark Challenges in Mobile AI

Trending practical topics in computer vision are often accompanied by papers

written by enthusiastic researchers and published at prestigious international confer-

ences. In particular, these large events frequently host workshops dedicated to specific

areas that attract significant interest from industry due to their practical applications.

In recent years, major conferences such as the Conference on Computer Vision and Pat-

tern Recognition (CVPR), the European Conference on Computer Vision (ECCV), and

the International Conference on Computer Vision (ICCV) have consistently included

at least one workshop focused on the latest trends and research in Mobile AI solutions.

It has become a common tradition for such workshops to organize challenges in

which participants are invited to develop deep learning approaches aimed at efficiently

solving various computer vision tasks on mobile hardware. These activities have facili-

tated and encouraged the creation of new state-of-the-art solutions, often accompanied

by papers ([4], [30], [20], [49], [6], [52], [25]) presented at respective workshops.

In 2025 we can highlight the Mobile AI Workshop at CVPR, New Trends in Image

Restoration and Enhacement Workshop (NTIRE) at CVPR and Advancement in Image

Manipulation Workshop (AIM) at ICCV. In particular, among the challenges working

with RAW data can be mentioned the following:

• Learned Smartphone ISP Challenge ([37])

• RAW Image Reconstruction from sRGB ([13])

• RAW Restoration Challenge (Tracks 1 and 2; [14])
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1.2 Development of Mobile AI solutions

If someone decides to design a solution that runs on a mobile device for tasks

such as language processing, image classification, image processing, or others, there

are generally three main steps that must be followed.

Figure 1.1: Steps for Deploying Machine Learning Models on Smartphones

The first step is to train the original model using standard libraries such as Py-

Torch or TensorFlow. However, this trained model cannot be executed directly on

smartphones because mobile platforms do not support PyTorch or TensorFlow in their

native form. As a result, the trained model must be converted into a format that is

compatible with a specific mobile machine learning library. Once the conversion is

complete, the new model can be executed using the chosen solution. One of the most

important aspects of this process is selecting the right mobile machine learning library.

The conversion process and supported features are entirely dependent on this choice.

The following introduces the four most popular mobile ML frameworks.

1.2.1 ONNX

One of Open Neural Network Exchange (ONNX) main benefits is that it allows

easy conversion of models from PyTorch to ONNX format. In fact, PyTorch provides

built-in tools that enable the export of a model with only one line of code. Despite its

many advantages, ONNX has a major limitation when it comes to mobile devices: it

only supports CPU-based inference. This means that if a model is converted to ONNX

and then executed on a mobile device, it will run solely on the device’s CPU. As a

result, it cannot take advantage of the available GPU or the latest high-performance
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NPUs, which are specifically designed to accelerate complex models. Therefore, if in-

ference performance beyond CPU is required, one should consider alternative frame-

works better suited for mobile AI acceleration.

1.2.2 ExecuTorch

If a model is developed using PyTorch, ExecuTorch might be the first option to

consider, as it is also created by the team behind PyTorch and integrates naturally with

its workflow. Unlike ONNX, ExecuTorch provides support for running models on

GPUs, NPUs, and DSPs, which is essential to deploy deep learning models efficiently.

Once the PyTorch model is ready, it needs to be exported to a supported format

and then compiled using ExecuTorch for the specific target device. This compilation

step can apply hardware-specific optimizations that improve runtime performance.

However, compiling for a particular hardware platform is not a simple process.

ExecuTorch alone is not enough; it requires the installation of vendor-specific SDKs to

generate a working model for each platform. For example, deploying to Qualcomm

NPUs involves downloading the Qualcomm SDK, installing the Android NDK, com-

piling ExecuTorch with Qualcomm support, and building both the model and the run-

time library. The resulting model can only be executed on the specific hardware for

which it was compiled, using the corresponding version of the compiled library.

This workflow must be repeated for each platform, such as Qualcomm, Medi-

aTek, or Vulkan, making it necessary to prepare separate application versions for dif-

ferent devices. At this stage, developing a universal mobile application is not feasible

using ExecuTorch. The only exception is CoreML, which is already supported directly

within ExecuTorch and does not require additional vendor SDKs. Due to these limi-

tations and the overall complexity of the process, ExecuTorch is currently not recom-

mended for general mobile AI development.

1.2.3 CoreML (iOS)

On iOS devices, CoreML is the recommended and most practical solution for

running machine learning models. CoreML provides a very straightforward model

conversion process from PyTorch or TensorFlow, often requiring just two lines of code.

Importantly, it does not require any vendor SDKs. It is enough to install the CoreML

Tools package using Python via pip, and the conversion can be performed on any plat-
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form, including Linux and macOS. Although native support for Windows was discon-

tinued, the process can still be done using the Windows Subsystem for Linux (WSL).

The CoreML converter supports a wide range of models, including large lan-

guage models and diffusion-based architectures. It allows deployment on Apple’s

dedicated hardware, such as the Apple Neural Engine (ANE) and Apple GPUs, mak-

ing it the only way to fully leverage this hardware. Additionally, CoreML includes an

efficient CPU backend.

1.2.4 LiteRT (TensorFlowLite)

On Android, the wide variety of hardware vendors creates the need for a uni-

fied solution that works on many devices. Fortunately, TensorFlow Lite, which was

recently renamed by Google as LiteRT, addresses this challenge. Although the name

has changed, the library itself remains identical. The rebranding was mainly a mar-

keting decision, especially as PyTorch has become more popular, while TensorFlow is

now mostly used by those already familiar with it.

Previously, only the TensorFlow and Keras models could be converted directly

to LiteRT. However, Google recently announced an official PyTorch converter, which

allows models to be converted to LiteRT with just one line of code. This makes it

possible to build the entire model in PyTorch and easily convert it to Android devices.

A major advantage of LiteRT is that a single converted model can run on many

hardware configurations, without requiring separate builds for each device. This is

a clear benefit over solutions such as ExecuTorch, which require compiling models

specifically for each target platform.

LiteRT supports hardware acceleration on GPUs and NPUs through delegates.

The GPU delegate enables inference on most mobile GPUs released in the past ten

years, as it requires only OpenCL, which is available on the vast majority of modern

Android smartphones. These delegates are plugin modules added to Android applica-

tions that enable the model to run directly on specialized hardware, with no additional

configuration needed. In addition, LiteRT offers powerful quantization tools, allow-

ing developers to reduce model size and increase performance while preserving good

accuracy even with 16-bit or 8-bit precision.
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Chapter 2

Existing Work

2.1 Available Datasets

There are many public datasets that utilize RAW image data, often captured us-

ing various smartphone models. Most modern smartphones support capturing images

in RAW format. To verify RAW support, tools like Camera2 API Probe can be used.

Once confirmed, applications such as Adobe Lightroom ([2]) can be used to capture

RAW images. An example of capturing an image in DNG format using a personal

smartphone is shown in fig. 2.1b. For dataset collections that involve a large number

of scenes and various camera systems, synchronized imaging setups have been devel-

oped, as illustrated in fig. 2.1a.

The following introduces several popular datasets that contain RAW image data.

• Samsung S7 Dataset (DeepISP) [64]. This dataset contains RAW and processed

RGB image pairs of 110 different scenes, captured using the Samsung S7 smart-

phone camera under normal exposure settings. Each image has a resolution of

3024 × 4032 pixels, taken with the 12MP Sony IMX260 sensor. The image pairs are

sufficiently aligned, making them suitable for evaluation with pixel-wise metrics;

• Huawei P20 Pro Dataset (PyNET) [41]. This dataset includes RAW and RGB im-

ages captured using the Huawei P20 Pro smartphone with the 12.3 MP Sony Ex-

mor IMX380 sensor. All photos were taken in automatic mode with default set-

tings throughout the entire data collection process. The original resolution of the

images is 3840 × 5120 pixels. However, the RAW and RGB image pairs exhibit a

noticeable misalignment, typically exceeding 8 pixels, which may limit the use of

strict pixel-wise evaluation;
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(a) The 4-camera rig used in [34] (b) Capturing photos in RAW format using [2]

Figure 2.1: Equipment and interface used for RAW image dataset collection

• SSID Dataset [1]. The dataset provides RAW–RGB image pairs captured using

the Samsung Galaxy S6 Edge smartphone with a 16MP Sony IMX240 sensor. All

images were taken under normal brightness conditions, and the dataset is well-

suited for supervised training and evaluation in RAW image processing tasks;

• RAW-to-RAW Dataset [3]. This dataset includes RAW images of natural scenes

along with corresponding RGB outputs rendered by the in-camera ISP of the

Samsung Galaxy S9, which uses the Sony IMX345 sensor. It is intended for tasks

involving learning the transformations performed by traditional ISPs in a super-

vised or semi-supervised setting.

• Fujifilm UltraISP Dataset [38]. The dataset contains over 6,000 RAW–RGB image

pairs captured with a 12MP Sony IMX586 sensor and a professional 102MP Fuji-

film GFX100 camera. The images were taken simultaneously using a dual-camera

setup under diverse daytime conditions. Pixel-wise alignment was performed

using deep learning-based matching, producing 99K image crops (256×256 px),

suitable for supervised RAW-to-RGB learning and evaluation.

• GenISP Low-Light Dataset [57]. This dataset contains 7,200 RAW images cap-

tured under low-light outdoor conditions using two cameras: Sony RX100 VII

(3.2K images) and Nikon D750 (4.0K images). Each image is annotated with

bounding boxes for 46,000 instances across three classes: people, bicycles, and

cars. The dataset features diverse illumination conditions and is intended for

benchmarking low-light RAW image restoration and object detection methods.
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2.2 Application Domains

The following sections provide a brief overview of recent work on key tasks

aligned with the proposed research direction with a focus on practical applications.

2.2.1 Learned ISP and Reversed ISP

In recent years, deep learning has enabled the development of multiple neural-

ISP solutions ([40], [33], [39], [37], [29], [42], [78]), most of which adopt CNN-based U-

Net-like architectures ([63]). Early approaches include DeepISP [64] and PyNET [41].

PyNET employs an inverted pyramidal architecture with five branches, each operat-

ing at a different image scale and trained sequentially, to extract and fuse global and

local features. Subsequent work, such as PyNET-CA [46], incorporated channel at-

tention mechanisms to enhance performance, while lightweight versions like Micro

ISP [38] and PyNET-V2 [36] were designed for efficient mobile deployment, achieving

a trade-off between latency and output quality on edge devices. More recent methods,

including MW-ISPNet [40], AW-Net [20], LAN [60], and RMFA-Net [50], improve im-

age restoration quality by integrating discrete wavelet transform (DWT) and double

attention module (DAM) techniques. To overpass the need for collecting paired raw-

sRGB datasets for each new camera model, Rawformer [59] introduces a fully unsu-

pervised Transformer-based RAW-to-RAW translation method that enables the reuse

of pre-trained neural ISPs across diverse camera domains. To eliminate the need for

pixel-aligned supervision, in [4] the authors proposes an unpaired training strategy for

lightweight ISPs, using perceptual and adversarial losses.

Existing RGB-to-RAW methods typically fall into two categories: metadata-based

and learning-based. Metadata-based methods rely on camera-specific ISP parameters

to reverse the processing pipeline. In contrast, learning-based methods use deep neu-

ral networks to directly learn the RGB-to-RAW mapping without metadata, often using

encoder-decoder architectures, multi-branch fusion, attention mechanisms, and cus-

tomized losses to handle channel differences and generalize across devices. These ap-

proaches have achieved state-of-the-art performance in recent benchmarks, including

the AIM 2022 [15] and NTIRE 2025 RGB-to-RAW reconstruction challenges [13].
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2.2.2 RAW Image Restoration and Super-Resolution

RAW image restoration is an important topic in computational photography, ad-

dressing key image quality challenges such as low resolution, noise, and motion blur

in portable devices. Although modern sensors offer higher bit depths, limitations in

size, power, and optics still impact image quality. Smaller sensors reduce light capture

and signal-to-noise ratio, making it harder to achieve sharp, high-resolution results.

Unlike RGB images processed by the ISP, RAW data preserves a linear response

to scene radiance and retains a wider bit range, typically 12–14 bits. This makes it a

better input for tasks like denoising, deblurring, and super-resolution.

Recent research has advanced RAW image super-resolution by directly address-

ing the limitations of RGB-based methods, which suffer from information loss due to

ISP processing. Xu et al. ([73], [74]) were among the first to highlight the benefits of

using linear RAW data for real-scene SISR. They addressed the limitations by propos-

ing a data generation pipeline that simulates realistic RAW space degradation, such

as variable blur, heteroscedastic noise, and downsampling, and a dual-branch CNN

that combines RAW input for structural detail recovery with RGB guidance for color

correction, enabling more accurate restoration under real-world conditions.

Building on this, the BSRAW method [16] advances blind super-resolution in the

RAW image domain by introducing a realistic and controllable degradation pipeline

that simulates complex real-world factors such as noise, blur, exposure inconsisten-

cies, and downsampling, all applied directly to linear RAW sensor data. Unlike con-

ventional SISR methods that operate in the sRGB domain and are hindered by the

non-linearities introduced by the ISP, BSRAW enhances images prior to ISP processing,

thereby preserving the original scene radiance and structural details more effectively.

To facilitate robust training and evaluation, the authors introduce a comprehensive

dataset combining DSLR images from MIT-Adobe FiveK [8] with a new DSLM dataset

captured using modern mirrorless cameras.

The NTIRE 2024 and 2025 challenges ([17], [14]) established comprehensive bench-

marks for this task, further pushing the state-of-the-art by highlighting top-performing

solutions trained on RAW patches with synthetic noise and blur modeled after BSRAW.

The best solution, including RawRTSR and RBSFormer [14], often employed Transformer-

based or dual-stage architectures with dedicated loss functions and training strategies,

balancing high fidelity and computational efficiency.
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2.2.3 RAW Object Detection

RAW images offer significant advantages over standard RGB images thanks to

their higher dynamic range and linear noise profile, making them especially valuable

in low-light and different weather conditions. They are usually five to ten times larger

than compressed RGB images, and large-scale RAW datasets containing more than

100,000 images are currently unavailable [7]. However, recent studies have shown

that even with limited RAW data, models specifically designed for the RAW domain

can achieve improved results in tasks such as image classification ([54], [55]), object

detection ([19], [22], [53], [70], [72], [76]), semantic segmentation [19], and instance

segmentation [10].

Several recent works have tackled the challenge of object detection on RAW im-

ages by proposing novel adaptations to either the detection pipeline or the ISP. Ljung-

bergh et al. [53] investigated the limitations of conventional ISP pipelines for object

detection and introduced learnable pre-processing operations, such as a differentiable

Yeo-Johnson transformation, which improved detection performance in poor lighting

conditions. Berdan et al. [7] presented ReRAW, a reverse ISP that reconstructs sensor-

specific RAW images from labeled RGB datasets using a multi-head gamma-based ar-

chitecture and a stratified sampling strategy, allowing effective training of lightweight

object detectors directly on synthetic and real RAW data. Wang et al. [70] proposed

AdaptiveISP, a reinforcement learning-based framework that dynamically configures

ISP pipelines for each image to optimize object detection accuracy and efficiency in di-

verse lighting scenarios. Xu et al. [72] developed a synthetic RAW degradation model

and a dual-branch convolutional network that combines RAW input with RGB guid-

ance for improved structural detail recovery under realistic distortions. Yoshimura

et al. [76] introduced DynamicISP, which adjusts ISP parameters in real time based

on feedback from previous recognition outputs, leading to improved performance in

low-light video sequences. Dutta et al. [22] demonstrated that continual learning with

RAW images allows models to adapt better to challenging conditions such as darkness

and weather variability, outperforming conventional RGB-based detectors. Morawski

et al. present GenISP [57], a minimal neural ISP optimized for low-light cognition by

incorporating color space transformations and expert-inspired color correction mod-

ules. GenISP is trained under the guidance of a fixed detector, avoids assumptions

about human perception, and generalizes well across sensors and detectors.
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Chapter 3

Relevant experience

I have experience in developing deep learning applications, particularly in the

field of computer vision, as a researcher. At the same time, I have been an active mem-

ber of the national competitive programming community. My involvement in teaching

and developing efficient solutions has equipped me with the skills and knowledge nec-

essary to drive innovation in this domain and address real-world problems.

3.1 Teaching and Mentoring Experience

Experience in competitive programming demonstrates the ability to work in a

team, solve complex problems, perform under pressure, manage time and deadlines,

and minimize errors. It also reflects discipline, focus, and speed, which are indispens-

able skills. As a participant in various international competitions, both individually

and as part of a team, I found this experience extremely valuable to develop critical

thinking and optimize my workflow in many areas of my future work. This is why,

from the beginning of my bachelor’s program and as I advanced in this field, I was

consistently involved in organizing competitions and activities aimed at developing

the local and national community, including university and high school students. In

particular, I was a problem-setter in various competitions, including the high school

section of the National Olympiad in Informatics, INFOPRO, and FIICode. Among my

results as a participant, one notable achievement is a Special Mention (17th place) in

SEERC, the Southeastern European Regional Contest, which is a regional phase of the

International Collegiate Programming Contest (ICPC). In addition, since 2021, I have

been teaching at the Ias, i County Center of Excellence, while also mentoring students

who have earned medals in the National Olympiad in Informatics.
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I had the opportunity to teach several classes for one year at the High School

of the Alexandru Ioan Cuza University of Iasi. It was a highly rewarding experi-

ence, where I helped pre-university students develop a passion for computer science

through interactive lessons and hands-on activities.

In the future, I would enjoy continuing to contribute to the teaching of univer-

sity students, especially in courses closely related to my research area, such as neural

networks, computer vision, algorithm design, data structures, and others. The only

constraint is to ensure that this teaching activity is carefully balanced with my primary

research work, so that I have enough resources to perform well in all my activities.

3.2 Research Experience

My research journey began with a strong foundation in algorithms and problem

solving, starting with my Bachelor’s and Master’s theses, which provided a strong

foundation for the direction I am now pursuing. In addition, my experience in the Cy-

ber Threat Intelligence Lab at Bitdefender as a Junior Security Researcher was valuable

for developing an organized and critical approach to research.

3.2.1 Bachelor Thesis

My bachelor thesis, titled A Heuristic Solver for the Directed Feedback Vertex Set

Problem, focused on the NP-complete problem known as the Directed Feedback Ver-

tex Set (DFVS). This problem is one of Richard Karp’s famous 21 NP-complete prob-

lems ([45]) and asks: ”What is the smallest set of nodes (vertices) that can be removed

from a directed graph to eliminate all cycles?”. The DFVS problem has a wide vari-

ety of applications, including deadlock resolution in operating systems, circuit design,

and program analysis. My primary objective was to develop an efficient heuristic algo-

rithm capable of producing solutions close to the global optimum in a short time while

using minimal computational resources. This problem was the topic of the 2022 edition

of the Parameterized Algorithms and Computational Experiments (PACE) Challenge.

The organizers introduced a new benchmark based on various patterns inspired by

real-world scenarios. I explored exact and heuristic approaches to address the problem

and developed an efficient solver with approximation quality close to the top solution.
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3.2.2 Master Thesis

During my master’s studies, my goal was to find the most suitable area to focus

on. I wanted to explore different branches of computer science in depth to understand

how each field is evolving. After carefully analyzing the options, I realized that the

domain I chose for this research plan offers a great opportunity to apply my existing

skills, develop new ones, and create useful solutions with real-world impact.

In my master’s thesis, Learned Lightweight Smartphone ISP with Unpaired Data,

I explored the feasibility of developing a deep learning model capable of approximat-

ing ISP functions without the need for paired data. Previous work ([35], [34]) explored

image enhancement using partially unpaired loss functions. However, to our knowl-

edge, no completely unsupervised training method was available for learning ISP.

Figure 3.1: Overview of our proposed unpaired training method in [4].

We proposed, to our knowledge, the first unsupervised training method suit-

able for lightweight deep models to learn ISP transformations (refer to fig. 3.1). We

demonstrated the robustness and generalization of our approach through extensive

experiments using three different neural network architectures of varying complexity

([39], [50]), evaluated on two real-world RAW-to-RGB datasets ([41], [38]) with mul-

tiple hyperparameter configurations. In addition, we ensured that all operations are

fully compatible with mobile AI accelerators and provided pre-trained models in Ten-

sorFlow Lite format. The results were promising in multiple aspects of image quality,

especially in terms of structural metrics, when compared to supervised training. We

also trained the same backbones used in the unpaired approach using a custom super-

vised training method, which achieved results that represent an upper bound for the

performance of the unpaired strategy. The supervised-trained models were submitted

to different tracks of the Mobile AI Challenge 2025 ([37]), demonstrating competitive

performance, while the contributions on the unpaired side were summarized in a pa-

per ([4]) presented at the Mobile AI Workshop, held in conjunction with CVPR 2025.
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The novel unpaired training strategy is based on several key contributions that

we proposed. In our work, we defined specific loss functions to facilitate the learning

of particular attributes in the generated images. The structural consistency was en-

sured by a loss component that minimized the difference in features maps from the last

convolutional layer of pre-trained VGG-19 ([66]). The reference image was obtained by

applying a specialized demosaicing algorithm ([56]) to the input. To reduce the influ-

ence of misleading colors, both the input and reference images were converted to a

different color space, where only the luminance component was retained and repli-

cated before being used as input for the model. The color and texture components

were addressed using dedicated loss terms in an adversarial setting. An MLP-based

discriminator receives features from a pre-trained Vision Transformer ([21]) applied to

slightly blurred images. Additionally, two convolutional discriminators process linear

features extracted from different layers of a pre-trained LPIPS+ model ([9]). In the final

version, we used a relativistic adversarial loss ([43]) with gradient penalties ([31]) for

the discriminators, although we experimented with various alternatives ([27], [5], [28])

during development. To balance training and ensure that each loss contributes with

a controllable gradient magnitude for each network update, so that no loss dominates

the others, we defined a Dynamic Loss Adaptation strategy [4].

Figure 3.2: Overview of our proposed architecture in supervised setup.

We further adapted the training pipeline for supervised learning and also defined

a robust neural architecture (refer to fig. 3.2) that is fully compatible with TensorFlow

Lite. The training is divided into four stages, each using different loss functions and

hyperparameters. We surpassed the performance reported by last year’s state-of-the-

art [50] in both output quality and inference speed, and we are currently preparing a

research paper to present the results and detail our approach.
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To achieve high-quality performance while ensuring fast execution on smart-

phones, we carefully designed both the architecture and the training process. The ar-

chitecture is a modified version of RMFA-Net ([50]), in particular the version designed

for smartphone inference. The signal passes through a black level correction module,

an input module, two refinement blocks, and one output module. In the first module,

the input is having its black levels corrected by subtracting learnable per-channel black

level offsets, then being scaled by learnable per-channel multipliers. In the input mod-

ule, the input is processed through two 3x3 convolutional layers to extract features and

then passed through a Tanh activation. Each block addresses feature representation by

incorporating a dedicated texture module, a tone mapping module, and both chan-

nel and spatial attention mechanisms. In the texture module. the input is processed

through two parallel branches, a 1x1 convolution for high-frequency details and a 3x3

convolution for low-frequency patterns, then the outputs are concatenated. The tone

mapping module processes the input through hierarchical downsampling and upsam-

pling to estimate global illumination features, which are subtracted from the input to

produce reflectance according to Retinex theory ([48]). Channel attention enhances im-

portant features via global pooling and 1×1 convolutions with sigmoid scaling, while

spatial attention refines feature locations using pooled features and a 7×7 convolution.

In the last module, the input is upsampled using pixel shuffle, then refined with a final

convolution, and mapped to [0,1] range with Sigmoid activation.

3.3 Relevance to PhD Proposal

My work on deep learning solutions applied to the Mobile AI area directly sup-

ports the goals of my PhD proposal, which focuses on improving RAW image process-

ing and understanding in real time on edge devices. The activities I was involved in

during my Bachelor’s studies, along with the research performed for my thesis, helped

me develop an efficient and structured approach to perform research. During my Mas-

ter’s program, I discovered my main area of interest and began exploring it in greater

depth. This work led to a paper presented at the Mobile AI Workshop at CVPR, where

I received valuable feedback from academic researchers and industry professionals. I

was also invited by postdoctoral researchers to collaborate on projects aligned with

the same direction I am now pursuing. My ongoing research builds on the work of my

Master’s thesis and provides a strong foundation for my future academic path.
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3.4 Dissemination of Research Results

Publications

• Andrei Arhire and Radu Timofte. 2025. “Learned lightweight smartphone isp

with unpaired data.” In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops, Nashville, Tennessee, USA

(Rank A* in CORE).

• Andrey Ignatov, Georgii Perevozchikov, Radu Timofte, et al. 2025. “Learned

smartphone isp on mobile gpus, mobile ai 2025 challenge: Report.” In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, Nashville, Tennessee, USA (Rank A* in CORE).

Presentations

• Andrei Arhire and Radu Timofte. “Learned lightweight smartphone isp with un-

paired data.” In the Mobile AI Workshop of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), Nashville, TN, USA, June 2025;

and in the 2FII Workshop, Faculty of Computer Science in Iasi, July 2025.

• Andrei Arhire and Radu Timofte. “Enhanced Learned Smartphone ISP.” In the

2FII Workshop, Faculty of Computer Science in Iasi, February 2025.

• Andrei Arhire and Eugen Croitoru. “A Dual Approach to One-Sided Crossing

Minimization through Exact and Heuristic Methods” In the 2FII Workshop, Fac-

ulty of Computer Science in Iasi, June 2024.

• Andrei Arhire, Matei Chiriac, Radu Timofte. “An Exact Twin-Width Algorithm”

In the 2FII Workshop, Faculty of Computer Science in Iasi, June 2023.
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Chapter 4

Proposed Work

4.1 Requirements

Considering the aspects mentioned below, the scholarship is a highly valuable

opportunity that would directly support and enhance my future research activities.

To develop efficient solutions in this area, access to specific hardware is required,

particularly a desktop GPU at least. There are a variety of projects in this field, some

of which can be trained in a short time on mid-range GPUs ([18]), while others re-

quire longer training on more powerful setups ([4]). To address this, I will use my own

workstation equipped with a GPU. However, for large-scale or parallel experiments, I

will also rely on cloud services. This is especially useful when running multiple experi-

ments simultaneously, such as benchmarking state-of-the-art models on several virtual

machines while testing my own methods under different configurations. Nowadays,

affordable GPU cloud services are widely available, and in some cases, renting a virtual

machine with pre-installed drivers, software, and a specific GPU that becomes acces-

sible within seconds can be much cheaper than only the electricity cost of running the

same GPU locally in my home country. For example, constrained by a competition

deadline, I completed all the training for the supervised solution in under a week, to-

taling over 400 hours on GPU, primarily on RTX 3090 and 4090. In this case, cloud

services were the only viable option, as I used up to 8 virtual machines running si-

multaneously on different configurations, each equipped with a dedicated GPU. The

unsupervised project was significantly more complex and lasted several months.
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4.2 PhD Plan

In my future research, I aim to develop innovative solutions across three key areas

within the broader scope of Optimizing RAW Image Processing and Understanding:

1. Learned ISP and Reversed ISP

2. RAW Image Restoration and Super-Resolution

3. RAW Object Detection

The research will progress one step at a time, following a sequence of dedicated

six-month projects corresponding to each of the outlined research areas.

The first project is in an advanced stage, featuring a novel architecture opti-

mized for LiteRT with custom loss functions and a four-stage inference pipeline balanc-

ing perceptual quality and fidelity. It surpasses last year’s state-of-the-art and shows

strong preliminary results in this year’s ICCV Learned ISP challenge, with final rank-

ings pending. Its scalable design supports both smartphone and GPU deployment.

Ongoing work focuses on enhancing tone mapping using NILUT [18], with plans to

publish the results.

In the first year, I aim to contribute to ISP-related research by developing a flexi-

ble, user-controllable image signal processing framework. Unlike traditional ISPs that

generate a fixed RGB output based on a predefined ground truth, my focus is on en-

abling real-time adjustments to key perceptual attributes such as noise level, sharp-

ness, and tone mapping. This flexibility is crucial, as over-aggressive noise reduction

can produce overly smooth results, while insufficient denoising may leave distract-

ing artifacts. To achieve this, I plan to design a compact and expressive latent space

for RAW-to-RGB mapping, inspired by models like CRISP [47]. The framework will

support intuitive, low-dimensional control over image characteristics such as contrast,

detail, and tone mapping. Also, I will explore burst-based RAW restoration methods

that leverage multiple aligned frames to enhance quality under challenging conditions,

including low light and motion blur. By efficiently fusing temporal information, the

pipeline can improve detail preservation and noise reduction without introducing ar-

tifacts or relying on computationally intensive architectures.

In the second year, I plan to focus on models based on Implicit Neural Repre-

sentations ([26], [58], [67]). These models do not store tensors explicitly, but rather
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learn continuous mappings from coordinates to values, which allows them to repre-

sent signals with high fidelity and flexibility. Because of these properties, INRs have

been successfully applied to tasks such as super-resolution [11], optical flow [44], and

image generation [68]. I am particularly interested in applying INR-based solutions

to problems in RAW image enhancement and learned photographic adjustments. Re-

cent methods such as NILUT and INRetouch [23] demonstrate how small INR-based

models can be trained to replicate high-quality tone and color edits. I am interested to

study how such approaches can be extended to support personalized image enhance-

ment and develop compact representations of complex image operations.

In the second half of the doctoral studies, I aim to develop blind RAW super-

resolution solutions that are compatible with ISP tasks and semantic understanding.

One of the main objectives is to create a pre-ISP super-resolution module that enhances

spatial detail in sensor-domain data without relying on ground-truth high-resolution

targets. In addition, I would like to investigate task-specific ISP architectures that re-

place the standard sequential pipeline with a more flexible design adapted for object

detection. The goal is to build modules that can dynamically select or combine ISP

functions based on feedback from the detection head, optimizing the image represen-

tation specifically for recognition accuracy rather than perceptual quality alone.

In general, a project will start with running baseline pre-trained models and re-

producing their performance while conducting a comprehensive literature review to

understand the current state of the art. The project will then proceed by analyzing

model strengths and weaknesses to identify improvement opportunities and adapt

models to new settings. Following this, the research will explore new ideas through

prototype implementations and iterate on architectures, training strategies, and loss

functions based on preliminary results. The most promising approach will be selected

for detailed validation and ablation studies to confirm its effectiveness. Finally, the

research will be documented in a scientific paper.

The final phase will involve documenting the research process, experimental re-

sults, and conclusions in a well-structured and comprehensive thesis. This will include

a detailed analysis of the effectiveness of the proposed methods, challenges encoun-

tered, and recommendations for future research directions in the field.

22



Chapter 5

Conclusion

In the past year, significant progress has been made in making deep learning

more accessible for mobile deployment. One of the most impactful developments was

the introduction of the first official PyTorch to TensorFlow Lite converter by Google.

This tool has major implications, as it enables developers to build powerful models

using full capabilities of PyTorch and then easily deploy them on smartphones.

At the same time, the capabilities of AI accelerators integrated into smartphone

chipsets have improved substantially, especially over the past two years. The perfor-

mance of modern NPUs is now comparable to recent desktop GPUs, offering a strong

motivation to design solutions that fully leverage this computational power.

In parallel, the research community is increasingly focusing on tasks involving

RAW image processing. The number of available datasets for RAW data has increased,

along with a growing number of solutions targeting tasks such as enhancement, un-

derstanding, and restoration directly on smartphones. Despite these advances, there is

still much to explore and improve in this area.

My academic experience during the Advanced Studies Master program helped

me develop a structured and efficient approach to research. This foundation has been

particularly valuable for my current direction. So far, this activity has led to a pa-

per presented at a highly relevant Mobile AI workshop at CVPR, an experience that

enhanced my understanding of the topic and offered valuable interactions with orga-

nizers and industry experts, reflecting strong industry interest.

Considering all these recent developments, and based on my current experience

and contributions, I believe that continuing along this direction will lead to practical

solutions capable of addressing real-world challenges effectively.
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